

Is crime predictable?

Jonathan Auerbach

9/28/2018

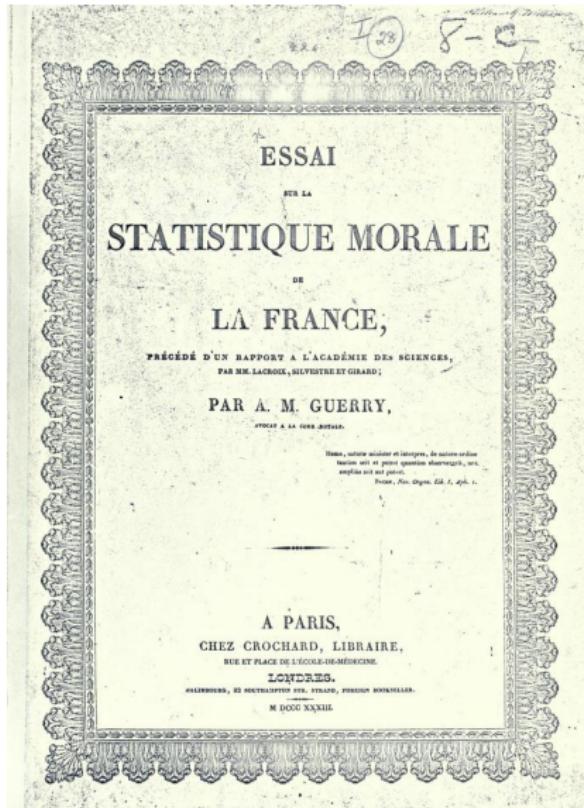
How do scientists predict future crimes?

Setup:

```
library("knitr")
library("tidyverse")
theme_set(theme_bw())
```

Is crime predictable?

- ▶ France created the first centralized system of crime reporting in 1825.
- ▶ Guerry (1833) analyzed more than thirty thousand property crimes and ten thousand personal crimes committed between 1825 and 1830.
- ▶ The incidence of (reported) crime varied considerably across France. However, regular patterns emerged in the data.
e.g. crimes against persons consistently highest in summer, crimes against property consistently highest in winter.
- ▶ Guerry wondered whether immutable laws—like those describing the phenomena observed in physics—determined crime, ultimately concluding:


“... the facts of the moral order, like those of the physical order, obey invariant laws, and that, in many respects, the judicial statistics render this a virtual certainty.”

Andre-Michel Guerry (1802-1866)

- ▶ Guerry was famous in his lifetime, winning the Montyon Prize twice. But he is largely unappreciated today.
- ▶ Friendly (2007) believes Guerry's modesty—both in birth and personality—allowed others to claim credit for his discoveries.
- ▶ Nevertheless, his work (along with that of Quetelet) founded the field of “moral statistics” and ultimately sociology and criminology.
- ▶ Additional accomplishments: invented the polar/rose plot, invented a mechanical calculator to compare trends, and was mayor of his village.

Guerry

Essay on the Moral Statistics of France (1833)

10

STATISTIQUE CRIMINELLE.

rien d'arbitraire, et ne tend à favoriser aucun système, puisqu'il est toute géométrique, et que l'arrondissement de chaque région est déterminé par celui des quatre autres. Elle paraît la plus convenable pour grouper les faits qui doivent être étudiés par grandes masses. Nous sommes loin de désirer, cependant, qu'elle soit adoptée pour la publication des documents de statistique officielle, qui ne sauraient être présentés d'abord avec trop de détails. Si l'administration les donnait seulement, comme on l'a demandé dans la vue de simplifier le travail, par ressort de cour royale ou même pour tous les départements formant l'arrondissement d'une ancienne province, ils deviendraient bien moins utiles et ne seraient pas recueillis plus aisement.

Si l'on représente par 100 le nombre des crimes commis en France chaque année, les cinq régions offrent les proportions suivantes:

Crimes contre les personnes.

Régions	Années 1825 1826 1827 1828 1829 1830						Moyenne
	Nord	23	24	23	20	24	
Sud	28	26	22	23	23	23	24
Est	17	21	19	20	19	19	19
Ouest	16	21	17	17	18	18	18
Centre	15	13	13	14	13	13	13
Totaux	100	100	100	100	100	100	100

Crimes contre les propriétés.

Régions	Années 1825 1826 1827 1828 1829 1830						Moyenne
	Nord	41	42	43	44	44	
Sud	12	11	11	12	12	11	12
Est	18	16	17	16	14	15	18
Ouest	17	16	17	16	14	15	18
Centre	15	12	11	13	12	13	12
Totaux	100	100	100	100	100	100	100

On voit que, pour les crimes contre les personnes, la plus grande différence observée dans chaque région, n'excède jamais de plus de *quatre centièmes*, la moyenne des six années, et que, pour les crimes contre les propriétés, elle n'est pas de plus de *deux centièmes* au-dessus ou au-dessous de cette moyenne. Assurément le produit annuel des révoltes ou des impôts, dans les diverses parties du royaume, ne saurait être évalué d'avance avec plus de précision, de certitude que le nombre des vols, des meurtres et des assassinats.

Sur 100 individus accusés de vol, dans tout le royaume, le nombre des hommes et des femmes a été successivement dans les proportions ci-après:

Guerry's Annual Data (person crimes per thousand)

```
tibble(Year = 1825:1830,  
       North = c(25, 24, 23, 26, 25, 24),  
       South = c(28, 26, 22, 23, 25, 23),  
       East = c(17, 21, 19, 20, 19, 19),  
       West = c(18, 16, 21, 17, 17, 16),  
       Central = c(12, 13, 15, 14, 14, 18)) %>%  
kable()
```

Year	North	South	East	West	Central
1825	25	28	17	18	12
1826	24	26	21	16	13
1827	23	22	19	21	15
1828	26	23	20	17	14
1829	25	25	19	17	14
1830	24	23	19	16	18

Guerry's Annual Data (property crimes per thousand)

```
tibble(Year    = 1825:1830,  
       North   = c(41, 42, 42, 43, 44, 44),  
       South   = c(12, 11, 11, 12, 12, 11),  
       East    = c(18, 16, 17, 16, 14, 15),  
       West    = c(17, 19, 19, 17, 17, 17),  
       Central = c(12, 12, 11, 12, 13, 13)) %>%  
kable()
```

Year	North	South	East	West	Central
1825	41	12	18	17	12
1826	42	11	16	19	12
1827	42	11	17	19	11
1828	43	12	16	17	12
1829	44	12	14	17	13
1830	44	11	15	17	13

Essay on the Moral Statistics of France (1833)

INFLUENCE DES SAISONS.

A. CRIMES CONTRE LES PERSONNES.		B. CRIMES CONTRE LES PROPRIÉTÉS.	
		Sur l'ann.	Sur l'ann.
Rivière	Décembre	82	221
	Janvier	78	215
	Février	79	279
Printemps	Mars	85	215
	Avril	92	238
	Mai	92	236
Été	Juin	99	78
	Juillet	85	231
	Août	85	231
Automne	Septembre	86	454
	Octobre	79	211
	Novembre	79	211
	Totaux	1,000	1,000

Le plus grand nombre des attentats contre les personnes est commis en été; c'est en hiver qu'il y en a le moins. Le printemps et l'automne en présentent un nombre à-peu-près égal (VI, a. — VI, VII, c.).

De tous les crimes contre les personnes, l'attentat à la poudre est celui pour lequel l'influence des saisons est le plus évidente. Sur 100 crimes de cette espèce, on en compte en été, 36; au printemps, 25; en automne, 23; et en hiver, 18 seulement.

Si cette distribution était, comme on pourrait le croire, un effet indirect des variations de température, les crimes contre les personnes seraient plus nombreux lorsque la température moyenne est le plus élevée, par conséquent, dans les mois de juillet et d'août, tandis que ce n'est pas alors qu'ils sont ordinairement, mais dans le mois de juin.


Le maximum du nombre des crimes contre les personnes, qui peut néanmoins être lié à l'élévation de la température, paraîtrait coïncider davantage avec la longueur des jours. On pourra s'en assurer dans quelques années, en faisant par mois, des relevés particuliers pour les divers attentats.

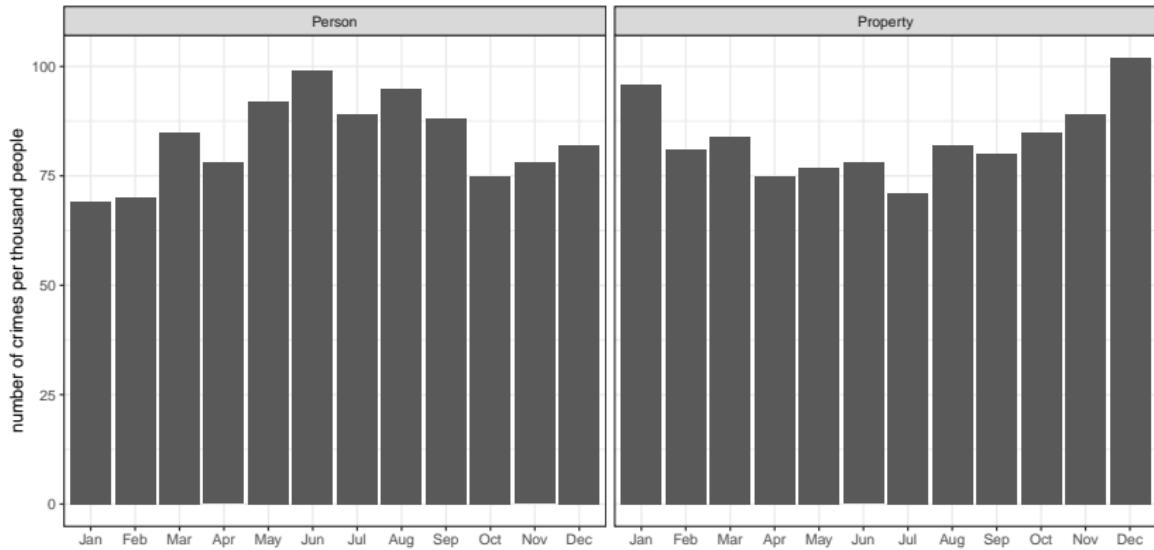
L'infanticide est plus fréquent au printemps et en hiver, qu'en été ou en automne. Dans le cas où cette distribution se maintiendrait à l'avenir, elle s'expliquerait aisément, puisque c'est à-peu-près celle des naissances les plus nombreuses. Le mois de mars qui voit commettre le plus d'infanticides est, après celui de février, celui qui compte aussi le plus de naissances.

Les crimes contre les propriétés se présentent à-peu-près en ordre inverse des crimes contre les personnes, de sorte que souvent le minimum des uns coïncide avec le maximum des autres (VI, a. — VI, VII, d.).

C'est en été que les crimes contre les personnes sont le plus fréquents; c'est également pendant cette saison qu'il lie le plus grand nombre d'admissions dans la maison royale

RÉSULTATS DIVERS.

* Le barème de chaque colonne correspond à la grandeur des nombres que se trouvent sur l'axe, et se rapporte à l'échelle de division placée à gauche.


Guerry's Monthly Data (crimes per thousand)

```
Guerry <-  
  tibble(Month      =  
          factor(format(ISOdate(1833,1:12,1), "%b") ,  
                  levels = format(ISOdate(1833,1:12,1), "%b")) ,  
          Person     = c(69, 70, 85, 78, 92, 99,  
                        89, 95, 88, 75, 78, 82) ,  
          Property   = c(96, 81, 84, 75, 77, 78,  
                        71, 82, 80, 85, 89, 102))  
  
Guerry %>%  
  top_n(4) %>%  
  kable()
```

Month	Person	Property
Jan	69	96
Oct	75	85
Nov	78	89
Dec	82	102

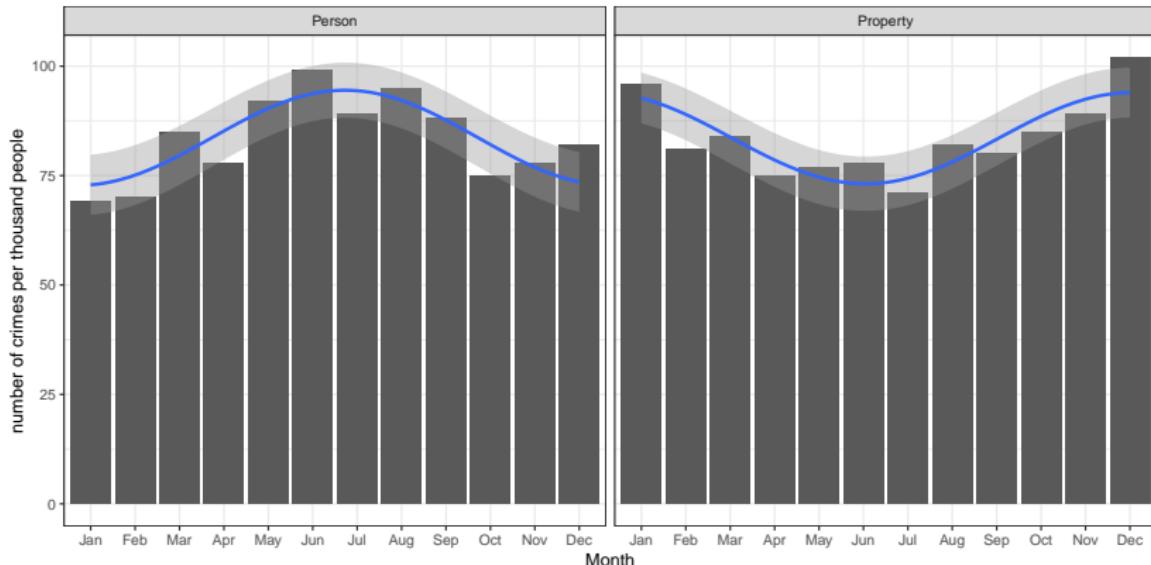
Person crimes greater in summer, property crimes in winter...

```
(guerry_plot <-
Guerry %>% gather(type, rate, -Month) %>%
  ggplot(aes(x = Month, weight = rate)) +
  geom_bar() + facet_wrap(~ type) +
  labs(y = "number of crimes per thousand people"))
```


... and the fluctuation is well explained by a sinusoid

```
guerry_fit <- Guerry %>%
  gather(type, rate, -Month) %>%
  filter(type == "Person") %>%
  mutate(x = as.numeric(Month)) %>%
  lm(rate ~ cos(x*2*pi/12) + sin(x*2*pi/12) ,
     data = .) %>% coef() %>% unname()
tibble(
  "$alpha_2$" = guerry_fit[2],
  "$alpha_3$" = guerry_fit[3],
  "$fi$" = atan(guerry_fit[3]/guerry_fit[2]),
  "$A$" = sqrt(guerry_fit[2]^2 + guerry_fit[3]^2)) %>%
  kable(digits = 2)
```

α_2	α_3	f_i	A
-10.07	-4.18	0.39	10.91


... and the fluctuation is well explained by a sinusoid

```
guerry_fit <- Guerry %>%  
  gather(type, rate, -Month) %>%  
  filter(type == "Property") %>%  
  mutate(x = as.numeric(Month)) %>%  
  lm(rate ~ cos(x*2*pi/12) + sin(x*2*pi/12),  
      data = .) %>% coef() %>% unname()  
  tibble(  
    "$alpha_2$" = guerry_fit[2],  
    "$alpha_3$" = guerry_fit[3],  
    "$fi$" = atan(guerry_fit[3]/guerry_fit[2]),  
    "$A$" = sqrt(guerry_fit[2]^2 + guerry_fit[3]^2)) %>%  
  kable(digits = 2)
```

α_2	α_3	fi	A
10.09	0.16	0.02	10.09

... and the fluctuation is well explained by a sinusoid

```
guerry_plot +  
  geom_smooth(aes(as.numeric(Month), rate),  
  method = "lm",  
  formula = y ~ cos(x*2*pi/12) + sin(x*2*pi/12),  
  data = Guerry %>% gather(type, rate, -Month))
```


Are predicted crimes preventable crimes?

- ▶ Governments have used data to inform policing to various degrees since Guerry. The current era of data-driven policing began when NYPD created its real-time crime reporting system, CompStat (Compare Stats or Computer Statistics portmanteau, 1994).
- ▶ NYPD uses CompStat to predict and then target areas for specific crime prevention strategies.
 - ▶ Between 1990 and 2009, homicide, robbery, and burglary fell over 80 percent.
 - ▶ Drug-related violence fell more than 90 percent.
 - ▶ Moreover, incarceration did not rise dramatically, challenging the previous zero-tolerance paradigm.
- ▶ Yet, these tactics were still controversial. In 2013, a judge ruled the NYPD's widespread practice of "stop, question and frisk" allowed for searches that violated the US Constitution. Critics also argued the dependence on data incentivized quotas and false reporting.

Post hoc ergo propter hoc

- ▶ It is unclear whether NYPD strategies caused the crime reduction; whether crime would remain high if the old strategy had been continued.
- ▶ Claiming crime fell because it followed a change in strategy is the “post hoc ergo propter hoc” fallacy. Just because one event proceeds another does not mean the first is necessarily the cause of the second.
- ▶ A cause is said to Granger cause an effect if: 1. the cause occurs before the effect, and 2. the cause contains information about the effect not available from another source (Clive Granger, 1969; Nobel Prize 2003).
- ▶ Major socioeconomic changes occurred in NYC between 1990 and 2009, such as immigration, gentrification, and the rise of the personal computer. These changes may better explain the drop in crime.

References

1. Friendly, Michael. "The Life and Works of André-Michel Guerry (1802-1866)." (2007)
2. Granger, Clive WJ. "Time series analysis, cointegration, and applications." *American Economic Review* 94.3 (2004): 421-425.
3. Guerry, A. M. "Statistique morale de l' Angleterre comparée avec la statistique morale de la France." (1864).
4. Guerry, A. M. "A Translation of Andre-Michel Guerry's Essay on the Moral Statistics of France." (2002).
5. Zimring, Franklin E. "The city that became safe." *New York's lessons for urban crime and* (2012).