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Scientists often want to summarize one variable as a
simple function of another variable

▶ Suppose you observed n pairs of random variables: X and Y.
▶ For example, you observe the heights of 10 child/parent pairs,

and you want to communicate to a new parent how tall their
child will likely be.

▶ You could list all 10 observed pairs you observed:

(X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4), (X5, Y5),

(X6, Y6), (X7, Y7), (X8, Y8), (X9, Y9), (X10, Y10)
▶ A simple summary of Y as a function of X is the straight line:

Yi = α + βXi



Which line is the best fit line? i.e. from which line would
you make predictions, Ŷ, closest to the observed values Y?
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Consider two measures of discrepancy: Sum of Absolute
Errors (SAE) and Sum of Squared Errors (SSE)

SSE = Σi=1
10 (Yi − Ŷi)

2 = 169

SAE = Σi=1
10 |Yi − Ŷi| = 29
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The red line is the slope that results in the best SAE, and
the blue line is the slope that results in the best SSE

SSE = Σi=1
10 (Yi − Ŷi)

2 = 169

SAE = Σi=1
10 |Yi − Ŷi| = 29

SSE = Σi=1
10 (Yi − Ŷi)

2 = 194

SAE = Σi=1
10 |Yi − Ŷi| = 25
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Squared error is often used as an approximation to an
arbitrary “smooth” measure of error

▶ Suppose we only had one observation: Y. How good is the
prediction Ŷ?

▶ Let f (Ŷ) be any “smooth” measure of error. f takes a
prediction as its argument, compares it to the actual outcome:
Y, and returns a measure of discrepancy ≥ 0.

▶ We assume the discrepancy is 0 only if the prediction is the
same as the outcome. f (Y) = 0 and f ′(Y) = 0

▶ A taylor expansion of f (Ŷ) around Y gives the following
approximation:

f (Ŷ) ≈ f (Y) + f ′(Y)(Y − Ŷ) + 1
2 f ′′(Y)(Y − Ŷ)2

= 0 + 0 ∗ (Y − Ŷ) + 1
2 f ′′(Y) · (Y − Ŷ)2

∝Ŷ (Y − Ŷ)2



The slope that minimizes the Sum of Squared Error (SSE)
can be solved for directly

▶ Choose β̂ = argmin
β

∑n
i=1(Yi − βXi)2

0 set= d
dβ

n∑
i=1

(Yi − βXi)2

=
n∑

i=1

d
dβ

(Yi − βXi)2

=
n∑

i=1
2(Yi − βXi)(−Xi)

= −2
n∑

i=1
YiXi + 2β

n∑
i=1

X2
i

⇒ β̂ =
∑n

i=1 YiXi∑n
i=1 X2

i

▶ Minimum since second derivative: 2 ∑n
i=1 X2

i ≥ 0
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